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Abstract
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have
line group symmetry. This allows two types of quantum numbers: roto-
translational and helical. The roto-translational quantum numbers are linear
and total angular (not conserved) momenta, while the helical quantum numbers
are helical and complementary angular momenta. Their mutual relations
determine some topological properties of energy bands, such as systematic
band sticking or van Hove singularities related to parities. The importance of
these conclusions is illustrated by the optical absorption in carbon nanotubes:
parity may prevent absorption peaks at van Hove singularities.

PACS numbers: 61.50.Ah, 73.61.Wp, 02.20.Bb

1. Introduction

Carbon nanotubes [1] are one of the most prominent quasi-one dimensional crystals which have
been extensively investigated both experimentally and theoretically. They are monoperiodic,
i.e. they have translational periodicity only in one direction. Thus their symmetry groups
are the line groups [2, 3]; in fact, any line group symmetry is reproduced by single- and
double-wall carbon nanotubes (SWNT and DWNT, respectively).

The symmetry of a system a priori determines many of its physical properties. For
example, the translational periodicity of a crystal leads to the band structure with the
Bloch eigenstates. Very general topological characteristics of the bands can be derived
directly from symmetry such as their degeneracy, systematic band sticking or crossing and
van Hove singularities [6]. In this paper we derive those properties for line groups in
general with emphasis on carbon nanotubes. Since these properties are based on symmetry
only, they refer to both electron and phonon bands. In particular, we show that parities
may induce band extrema. Furthermore, the line group symmetry allows two different
types of quantum numbers as will be described below. Both types have been used in
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the literature for carbon nanotubes [4, 5]; but their physical content and their advantages
or disadvantages for specific physical problems have not yet been clearly presented. We
give an detailed analysis of their mutual relations and illustrate their usage for carbon
nanotubes.

The symmetry operations of carbon nanotubes include screw-axis operations, translations
along and rotations around the tube axis (z-axis), which stem from the 2D translations of
the graphene lattice (which is rolled up to form the tube). In addition, there are rotation
for π around an axis perpendicular to z, and in achiral tubes only, mirror and glide planes
[2, 3]. In general, pure translations lead to a linear quasi-momentum quantum number k and
pure rotations to an angular quasi-momentum quantum number m. For any line group which,
like the SWNT groups, contains a screw axis, however, two types of decomposition of the
group lead to two different sets of quantum numbers labelled (k,m) and (k̃, m̃). These two
sets, corresponding to different choices of coordinates in the momenta space, we will call
linear and helical quantum numbers, respectively. The linear quantum number k corresponds
to the pure translational subgroup of the line group and the linear number m to rotations
including the rotational parts of the screw axis operations. In contrast, in the helical quantum
numbers (k̃, m̃), the screw axis operations are contained in the roto-translational subgroup
corresponding to k̃ while m̃ corresponds to only pure rotations.

The linear (k,m) quantum numbers are more commonly used in the literature for carbon
nanotubes, although they have some disadvantages especially for chiral tubes which in this
description have a rather complicated band structure. Even more important, the linear number
m is not a fully conserved quantum number and thus has to be used carefully. Since depending
on the particular physical problem either the linear or the helical quantum numbers are more
suitable, it may be required to switch from one to the other description.

We present in section 3 the relation between these two descriptions and give a formula
for the calculation of the linear from the helical quantum numbers and vice versa, after having
introduced in section 2 the structure of the first family line groups. In section 4 we derive the
general properties of the nanotube bands from their symmetry, starting with inorganic chiral
nanotubes and giving more details for chiral and achiral carbon nanotubes.

2. The first family line group structure

There are 13 infinite families of the line groups [9]. Each of them is characterized by the
screw-axis (including the trivial case of pure translations), principal rotational axis and parities.
The line groups of the first family are generated by the screw-axis and pure rotations only;
no parity is present. Any other line group contains a first family line group as an index-two
or index-four subgroup. Therefore, the irreducible representations of all the line groups are
constructed by the irreducible representations of the corresponding first family line group (the
former can be obtained from the latter by the index-two subgroup induction in one or two
steps). In other words, the structure, irreducible representations and quantum numbers are
reduced to the first family subgroup. For other groups parities and their quantum numbers
have to be added.

Each first family line group L is commutative and non-symmorphic (i.e. in general it
contains a screw-axis), with elements combining translations along and rotations around the
tube axis. Two structural characteristics of these groups, two types of decompositions, underlie
two different sets of quantum numbers labelling the irreducible representations.

The first decomposition (precisely, central extension) is onto the invariant translational
(infinite cyclic) subgroup T (a) (translations by multiples of the period a) and the isogonal
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rotational group L/T (a) ∼=Cq . The decomposition parameters q and a, together with an
additional integer p, specify the group in the international notation

L = Lqp(a) q = 1, 2, . . . p = 0, 1, . . . , q − 1. (1)

The roto-translational generators, �(1, 0) = (I |a) and �(0, 1) = (Cq |ap/q) (Koster–Seitz
notation), enable the elements of L to be obtained as

�(t, j) =
(

Cj
q

∣∣∣∣
(

Fr

[
jp

q

]
+ t

)
a

)
j = 0, . . . , q − 1 t = 0,±1, . . . . (2)

For j = 0, the elements �(t, 0) form the translational subgroup. Since �(0, 1) is the finest
rotation Cq followed by a fractional translation, the isogonal group is not a subgroup of L
unless p = 0 (i.e. when L is symmorphic). This decomposition leads to the linear quantum
numbers (k,m), where k corresponds to the translational subgroup with the elements �(t, 0)

and m corresponds to the set with the elements �(0, j), which do not form a subgroup; hence
m is not fully conserved (unless p = 0).

The other decomposition of the first family line groups is the natural factorization into
the direct product of two cyclic subgroups: the infinite helical (screw-axis) subgroup T r

q (na)

and the maximal rotational subgroup Cn:

L = T r
q (a) ⊗ Cn,

{
convention (C1) : r = 0, 1, . . . , q/n, GCD(q/n, r) = 1
convention (C2) : r = 0, 1, . . . , q, GCD(q, r) = 1.

(3)

These two cyclic subgroups are generated by �̃(1, 0) = (
Cr

q

∣∣ n
q
a
)

and �̃(0, 1) = Cn = (Cn|0)

(helical generators), i.e. each element takes the form

�̃(z, s) =
(

Cr
q

∣∣∣∣nq a

)z

Cs
n s = 0, . . . , n − 1 z = 0,±1, . . . . (4)

The corresponding helical quantum numbers (k̃, m̃) are both fully conserved, since both �̃(1, 0)

and �̃(0, 1) form subgroups of the line group.
Some important details concerning this factorization are derived in appendix A. q is a

multiple of n, q = q̃n, and the translational period na of the helical subgroup alone is realized
by �̃(q, 0) = (I |na). Therefore, na/q is the length of the structural motive, monomer, and the
whole system is obtained by successive action of the screw-axis generator on this monomer.
In particular, q̃ consecutive monomers build the translational period of length a. The helical
parameter r is not uniquely defined: the same line group elements are obtained if any multiple
of q̃ is added to r. This ambiguity is resolved by either of two conventions in (3), (C1) or (C2).
In the (C1) convention r = r0, while in (C2) l is chosen such that r = r0 + lq/n is coprime
with q.

Of course, the roto-translational generators � may be expressed in terms of the helical
ones, �̃, and vice versa:

�̃(1, 0) =
(

Cr
q

∣∣∣∣nq a

)
= �(r, 0) �̃(0, 1) = Cn = �

(
0,

q

n

)
(5)

�(1, 0) = (I |a) = �̃
(q

n
,−r (mod n)

)
�(0, 1) =

(
Cq

∣∣∣∣pq a

)
= �̃

(
p

n
, nFr

[
1 − r

p

n

q

])
.

(6)

This is used in appendix B to interrelate the parameters (q, p, a) and (q, r, n, a) of the roto-
translational and helical factorizations of the line groups:

n = GCD(q, p) r0 =
(p

n

)ϕ(
q

n
)−1 (

mod
q

n

) p

n
= rϕ(

q

n
)−1

(
mod

q

n

)
. (7)
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3. Irreducible representations

The described structural properties have been used to obtain the irreducible representations
(IRs) of the first family line groups in two different ways [7, 8], and parametrized by two
different sets of quantum numbers. First, the roto-translational decomposition results in the
quantum numbers of linear and total angular quasi-momenta, k and m. Alternatively, the
helical decomposition involves helical and pure rotational quasi momenta, k̃ and m̃. The IRs
are given by the corresponding generator representatives

kAm(�(1, 0)) = eika
kAm(�(0, 1)) = eika p

q eim 2π
q k ∈

(
−π

a
,
π

a

]
m ∈

(
−q

2
,
q

2

]
(8)

k̃Am̃(�̃(1, 0)) = eik̃ a
q̃

k̃Am̃(�̃(0, 1)) = eim̃ 2π
n k̃ ∈

(
−q̃

π

a
, q̃

π

a

]
m̃ ∈

(
−n

2
,
n

2

]
.

(9)

The intervals giving the ranges of k and k̃ are called Brillouin zones; m and m̃ take only integer
values from the intervals above. It is assumed that all the equalities in k and m are modulo
these intervals. From (8) and (9) follows:

kAm(�̃(1, 0)) = eik a
q̃ eimr 2π

q
kAm(�̃(0, 1)) = eim 2π

n (10)

k̃Am̃(�(1, 0)) = e−im̃r 2π
n eik̃a

k̃Am̃(�(0, 1)) = eim̃
1−r

p
n

q̃
2π
n eik̃a p

q . (11)

Since the k̃m̃-numbers are independently defined on the different generators, the same
representation is obtained for any m̃′ = m̃ +M̃n and/or k̃′ = k̃ +K̃q̃2π/a. Nevertheless, from
(10) it follows that kAm = k′Am′ if and only if simultaneously m′ = m+Mn and k′ = k+K2π/a

such that Mr = −K (mod q̃); due to r
p

n
= 1 (mod q̃), this allows simultaneous changes

k′ = k + K2π/a and m′ = m − pK (mod q).
Each irreducible representation of L is labelled by both sets of quantum numbers, (k,m)

and (k̃, m̃). The equality k̃Am̃(�) = kAm(�) for each � ∈ L establishes the correspondence
between the pairs (k̃, m̃) and (k,m). The transition rules (k,m) → (k̃, m̃) are obtained by
comparison of (10) and (9):

(k,m) → (k̃(k,m), m̃(m)) =
(

k +
rm

n

2π

a
+ K̃q̃

2π

a
,m + M̃n

)
(12)

the integers K̃ and M̃ are uniquely (and independently) determined by the requirement that k̃

and m̃ are from the intervals given in (9). Analogously, from (8) and (11) it follows:

(k̃, m̃) → (k(k̃, m̃),m(k̃, m̃)) =
(

k̃ − m̃
r

n

2π

a
+ K

2π

a
, m̃ − Kp + Mq

)
(13)

where K and M are again integers used to get the momenta from the intervals given by (8).
Note that now K must be found first because M depends on K.

Together with the helical quantum number k̃, labelling the representations (9), the
transition rules depend on the r-convention. Indeed, the choice of r determines the helicity of
the momentum k̃: the unit change of the total momentum m leads to the same change of m̃

(assuming n > 1) and a simultaneous change of k̃ for 2rπ/na. Analogously, a change of the
helical momentum by 2π/a preserves the linear momentum k and induces a jump by p of the
total angular momentum m.

For the different allowed k and fixed m one gets the m-series, or the m-band, over the
Brillouin zone k ∈ (−π/a, π/a] of the representations. Analogously, the m̃-bands are defined
over the helical Brillouin zone k̃ ∈ (−πq̃/a, πq̃/a]. From (12) it follows that the whole set
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Figure 1. Conduction bands of the (8, 4) carbon nanotube calculated within the first-neighbour
tight binding approximation [8]. In the left panel, the bands are shown in the linear (k,m)

description; on the right the bands are given by the helical (k̃, m̃) quantum numbers. In the (8, 4)
tube, q = 56, n = 4, q̃ = 14 and p = 44. Thus there are 56 (k,m) bands with k ∈ (−π/a, π/a]
or 4 (k̃, m̃) bands with k̃ ∈ (−14π/a, 14π/a]. The bold solid and dotted lines represent those
linear m bands, which, being unfolded, yield the helical band m̃ = 0. The band indices are given
in the figure.

of q̃ different m-bands with m differing by multiples of n gives exactly a single m̃-band with
m̃ = m (mod n). Since k̃(k,m) + 2π/a = k̃(k,m + p̃ (mod q)), the segment of the helical
Brillouin zone of the m̃-band corresponding to the m-band (thus m = m̃ + Mn for some M) is
followed by the segment corresponding to (m + p (mod q)) band; these q̃ different segments
continuously fill up the m̃-band. This is illustrated in figure 1, where we show the conduction
bands of the (8, 4) carbon nanotube given by both linear (k,m) and helical (k̃, m̃) quantum
numbers. The m̃-bands can be thought of as consisting of the ‘unfolded’ m-bands. There
are n = 4 m̃-bands with k̃ ∈ (−14π/a, 14π/a] and q = 56 m-bands with k ∈ (−π/a, π/a].
Thus in the description by the helical quantum numbers (k̃, m̃), the number of bands is smaller
by a factor of q̃ = 14 than for the linear quantum numbers, but the range of k̃ is increased by
the same factor.

The physical contents of the obtained quantum numbers are seen from the irreducible
representations. From the first of equations (8) it follows that k is canonically conjugated to
the discrete translations, i.e. k is the conserved linear quasi-momentum. Further, in the second
equation (8) the same ratio p/q both in the generator and in the exponent means that k is
completely related to the fractional translation of �(0, 1). Then the remaining m-dependent
part appears due to the isogonal rotation Cq , and m is the corresponding angular momentum
(component along the rotational axis of Cq). Unless L is symmorphic, Cq is not its element,
and m is not a conserved quantum number. As for the k̃m̃-numbers, from the first equation
of (9) it follows that k̃ combines angular and linear momenta into the helical momentum
conjugated to the helix chosen by the r-convention. The complementing helical momentum
m̃ is the angular momentum related to the pure rotations of the point subgroup Cn. Both



5712 M Damnjanović et al

Table 1. Analysis of the representations (k̃ = 0, q̃π/a, m̃ = 0, n/2). The last four columns give
their km quantum numbers depending on the parities of q̃, A and p̃ (defined by p̃r = 1 + Aq̃).
Being coprimes, q̃ and p̃ cannot be simultaneously even; when q̃ is odd, A and p̃ are of opposite
parity. Since m̃ = n/2 only when n is even, then both p and q are even, and in the convention
(C2) r is odd (column 4). For the symmorphic groups q = n, p = p̃ = 0 and q̃ = 1. When
q = 2p, then p = n, q̃ = 2, p̃ = 1, A = 0 (column 2). For nanotubes with hexagonal lattice,
q̃ = 2 (mod 12) (columns 1, 2).

(k,m)

q̃ even q̃ odd

(k̃, m̃) A even A odd p̃ even p̃ odd

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)(
0, n

2

) (
π
a
,− p

2

) (
π
a
,

q−p
2

) (
π
a
,

q−p
2

) (
π
a
,− p

2

)
(
q̃ π

a
, 0

) (
0,

q
2

) (
0,

q
2

) (
π
a
,− p

2

) (
π
a
,

q−p
2

)
(
q̃ π

a
, n

2

) (
π
a
,

q−p
2

) (
π
a
,− p

2

) (
0,

q
2

) (
0,

q
2

)

quantum numbers k̃ and m̃ are conserved. The inherent physical meaning of the quantum
numbers makes one or the other choice more suitable for different physical considerations.

For example, we consider optical transitions in carbon nanotubes. They are almost vertical
in the linear Brillouin zone, i.e. �k = 0. Thus no crossing of the Brillouin zone edge occurs,
where bands with different m meet, and m can be treated as a conserved quantum number.
On the other hand, if an electron is scattered by, e.g., a phonon, the linear quasi-momentum k
changes and possibly crosses the Brillouin zone edge. In this case, m is no longer conserved
and the (k̃, m̃) numbers are more suitable.

The special points in the one-dimensional Brillouin zone are its centre and the edge.
The real representations with k̃ = 0, q̃π/a and m̃ = 0 and (if n is even only) m̃ = n/2 are
particularly important: these are either the identity representation (k̃=0Am̃=0(�) = 1 for all the
elements of L) or alternating representations (half of the elements are represented by 1 and
the other half by −1). The (k,m) quantum numbers of these representations may be found by
the transition rules, and the analysis is presented in table 1.

In addition to the symmetry operations of first family line groups, carbon nanotubes
contain a two-fold rotational axis (U axis) perpendicular to the tube axis and, achiral tubes
only, mirror and glide planes. In general, if the first family line groups are enlarged by the
U axis the fifth family groups are obtained. The special cases of the groups with q = n

(symmorphic) and q = 2n allow the incorporation also of mirror, glide and roto-reflection
planes yielding the remaining 11 families. Therefore, the previous results should be specified
for these groups. As for the symmorphic groups L = T 1

nCn = Ln0, both decompositions
and corresponding generators coincide; thus k̃ = k and m̃ = m, leaving only one type of
representation. In the case q = 2n, one has q̃ = 2, r = 1 (in both conventions) and p = n:
L = T 1

2nCn = L2nn. The transition rules between the generators are easily found from (5)
and (6):

�̃(1, 0) = �(2, 0) �(0, 1) = �̃(1, 0) �̃(0, 1) = �(−1, 2). (14)

The irreducible representations and their transition rules follow directly from (8)–(10)
and (12), (13).

4. Band assignation and degeneracy

The high and diverse symmetry of nanotubes makes group theoretical techniques
extraordinarily fruitful in their studies [2, 6]. In general, the symmetry group of single-wall
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inorganic nanotubes [3] is from the first family; the additional vertical and horizontal mirror
planes for the special achiral (zig-zag and armchair) chiralities give the fourth and eighth
families, respectively. Only single-wall carbon nanotubes, built solely of carbon atoms, have
in addition the U-axis symmetry. Thus, the line group of chiral SWNTs is from the fifth family,
while for both achiral types, zig-zag and armchair tubes, the thirteenth family is obtained. Both
sets of roto-translational (k,m) or helical (k̃, m̃) quantum numbers, described in the previous
section, are used in studies of nanotubes [4, 5].

In the simplest case of inorganic chiral tubes, when the symmetry group is from the first
family, the eigen problem H |x〉 = E|x〉 of the Hamiltonian H of a subsystem (e.g., electron or
phonon subsystem) is solved by the Bloch functions |km; λ〉 or generalized Bloch functions
|k̃m̃; λ〉. Here λ counts different states with the same quantum numbers. The Bloch function
|km; λ〉 describes a quantum state of a (quasi)particle propagating along the tube axis with the
quasi-momentum k and the z-component of the angular momentum m; analogously, |k̃m̃; λ〉
is a state with sharp helical and complementary angular momenta. For fixed m (or m̃) and λ

the corresponding eigen energies ελ
m(k) and ελ

m̃(k̃) continuously depend on k (or k̃). Thus, to
a band of the representations in general correspond several energy bands, differing in λ. It
should be emphasized that the electron or phonon Hamiltonians, which are usually considered,
commute with time reversal. Exactly like the U-axis, this operation reverses all the involved
momenta. Based on the irreducible co-representations instead of the representations in the
SWNT case, the further discussion is essentially the same as for SWNT energy bands. This
also means that time reversal gives no further degeneracy for SWNTs.

The fifth family symmetry group of a chiral SWNT contains in addition the U-axis, i.e. a
rotation by π about an horizontal axis. The same two sets of quantum numbers parametrize
the irreducible representations [8, 11]. Since the U axis reverses all the momenta, it maps
|k̃, m̃〉 to |−k̃,−m̃〉, and vice versa. As far as these two states are different, the corresponding
energy levels are degenerate: labels λ may be chosen such that

εm̃(k̃) = ε−m̃(−k̃) = ε−m̃(2q̃π/a − k̃) (15)

εm̃(q̃π/a − k̃) = ε−m̃(q̃π/a + k̃). (16)

The doublet of states |k̃, m̃〉 and |−k̃,−m̃〉 spans the two-dimensional space carrying the
irreducible representation k̃Em̃ with integer m̃ ∈ (−n/2, n/2]. Therefore, it suffices to
consider k̃ in the interval [0, q̃π/a] being the irreducible domain [12]. Only if simultaneously
k = 0, q̃π/a and m = 0, n/2, the states |k̃, m̃〉 and |−k̃,−m̃〉 are physically the same:
|−k̃,−m̃〉 = ±|k̃m̃〉. Thus, at the edges of the irreducible domain even and odd states appear:
|00±〉, |q̃π/a, 0±〉, and, only for n even, |0, n/2,±〉 and |q̃π/a, n/2,±〉. These singlet states
correspond to the one-dimensional representations 0A

±
0 , q̃π/aA

±
0 , 0A

±
n/2 and q̃π/aA

±
n/2. All

other states are doublets, yielding at least double-degenerate energy bands over the interior
of the irreducible domain. Those with opposite m̃ meet at k̃ = 0, q̃π/a. Only for the bands
m̃ = 0, n/2, when −m̃ = m̃, equations (15) and (16) become

εm̃(k̃) = εm̃(−k̃) εm̃(q̃π/a − k̃) = εm̃(q̃π/a + k̃). (17)

Thus these bands are symmetric around k̃ = 0 and q̃π/a, respectively. Therefore, they must
have extrema (i.e. peaks in the density of states) at k̃ = 0 and k̃ = q̃π/a, where they end
by even or odd singlet states. In fact, these singularities are essentially a consequence of the
U-axis parity.

Also with the (k,m)-numbers, the Bloch states |km〉 and |−k,−m〉 form a degenerate
doublet, corresponding to the two-dimensional irreducible representation kEm. Again, the
energy bands (as well as the representation bands) are defined over the irreducible domain
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k ∈ [0, π/a], while m takes on the same values as in (8). Analogously to the representation
bands, each energy m̃-band contains q̃ energy m-bands with m = m̃ + in (i = 0, . . . , q̃).
The part of the m̃-band corresponding to m is followed by the part corresponding to m + p

(mod q). The systematic band sticking at the Brillouin zone edges is given by the U-axis
operation and follows from (15) (at k = 0), and (16) and (13) at k = π/a (see also figure 1):

εm(k) = ε−m(−k) εm(π/a − k) = εm+p (mod q(π/a + k). (18)

Although k = 0 is invariant under U, for m = 1, . . . , q/2 − 1, the states |0m〉 and |0,−m〉
are again a two-dimensional doublet of the irreducible representations 0Em. Only the
states corresponding to k̃ = 0, q̃π/a and m̃ = 0, n/2 are singlets (see table 1). At the
U-invariant edge k = 0, the one-dimensional irreducible representations 0A

±
0 and 0A

±
q/2

are carried by either even or odd states |0,m = 0±〉 and |0,m = q/2,±〉. Analogously,
k = π/a is mapped by the U-axis operation to k = −π/a, which is equivalent to the
irreducible Brillouin zone point π/a. Thus, π/a is U-invariant, but according to (13)
m is changed to m′ = −p − m, and U intertwines the states |π/a,m〉 and |π/a,m′〉. The
singlets |π/a,−p/2,±〉 and |π/a, (q − p)/2,±〉 appear only for p even and correspond
to the one-dimensional representations π/aA

±
−p/2 and π/aA

±
(q−p)/2. The remaining integers

m ∈ (−p/2, (q − p)/2) give the double-degenerate levels of the representations π/aEm. The
bands with m and m′ differ in the interior of the irreducible domain, but they stick together
at k = π/a as well as those with m and −m stick together at k = 0. The exceptions are the
bands m = 0,

q

2 at k = 0 and m = −p

2 ,
q−p

2 at k = π/a:

εm(k) = εm(−k) εm(π/a − k) = εm(π/a + k). (19)

Again, it follows that the singlet states at the edges are van Hove singularities of the
corresponding bands.

The mirror planes, σv and σh = Uσv, yield new parities in the cases of zig-zag (Z)

and armchair (A) tubes. Even and odd states with respect to σv are labelled by A and B.
The parity of the horizontal mirror plane σh is denoted as that of U, i.e. ‘+’; and ‘−’ now
points to the even and odd states with respect to either one of these z-reversing operations.
Obviously, σv leaves k invariant while m is reversed, forcing m and −m bands to coincide.
This causes additional degeneracy. Therefore, in the interior of the irreducible domain, the
U-degenerate states |km〉 and |−k,−m〉 are mapped by σv onto |k,−m〉 and |−k,m〉. For
each m = 1, . . . , n − 1 all these states span the four-dimensional irreducible representation
kGm of the four-fold degenerate band. Only for m = 0, n does the degeneracy remain
two-fold, in accordance with the two-dimensional irreducible representations kE

A/B

0 and

kE
A/B
n over σv-even or odd states |km,A/B〉 and |−km,A/B〉. If further k = 0, the states

|00,±, A/B〉 and |0n,±, A/B〉 are non-degenerate, corresponding to the one-dimensional
representations 0A

±
0 , 0B

±
0 , 0A

±
n and 0B

±
n . For the remaining m = 1, . . . , n − 1, the states

|0m±〉 and |0,−m±〉 are degenerate giving two-dimensional representations 0E
±
m (parity with

respect to σh). At the other edge k = π/a, for integer m ∈ (0, n/2) the four-fold degenerate
states |π/a,m〉, |π/a,−m〉, |π/a, n − m〉 and |π/a,m − n〉 span the representation π/aGm.
As for m = 0, n, the states |π/a, 0, A/B〉 and |π/a, n,A/B〉 as well as the states (existing
only for n even) |π/a, n/2,±〉 and |π/a,−n/2,±〉 are degenerate, being associated with the
representations π/aE

A/B

0 and π/aE
±
n/2. Due to mirror symmetry, the first equality (19) for each

m and k = 0 is fulfilled, as well as the second one for m = n/2 (at π/a). Thus, the z-reversal
parity again characterizes all the states at the edges of the bands satisfying (19), and therefore
coincides with van Hove singularities; this includes all bands at k = 0 and the m = n/2 band
(only if n even) at k = π/a.

We conclude that the systematic band degeneracy is caused by the parities and/or
time reversal. Their nontrivial action on the momenta eigenstates defines the irreducible
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representations of the symmetry group with dimension 2 (E) or 4 (G); only for some particular
values of the momenta is the action trivial giving non-degenerate representations A and B. The
representations uniquely correspond to each complete set of quantum numbers (momenta and
parities).

5. Discussion

A number of the symmetry-based characteristics of the energy bands of nanotubes has been
derived. These properties refer to any (quasi)particle subsystem bands, in particular to the
electron and phonon bands.

Two structural characteristics of the line groups allow the nanotube band assignment by
either helical [5] or roto-translational [4] quantum numbers. Based on the factorization onto
subgroups, the helical quantum numbers are the conserved helical k̃ and remaining angular
momentum m̃. They give simple insight into the band topology. The roto-translational
quantum numbers reflect the symmetry group decomposition onto the translational subgroup
(conserved linear momentum k) and the isogonal factor group (nonconserved angular
momentum m). Since this structure is the same for 3D crystals, the consequent linear and
total angular momentum are more customary, although the latter are not conserved. The rules
of transitions from one to the other set of quantum numbers facilitate the analysis of the band
topology in terms of (k,m)-numbers. These two sets coincide if and only if the symmetry
group is symmorphic.

Due to the time reversal symmetry, which like the U axis reverses all momenta, the
symmetry-based properties of the bands of any single-wall nanotube are the same as for
the carbon ones. Thus, instead of the Brillouin zone, only its nonnegative half (irreducible
domain) completely determines the bands. The systematic band degeneracy is two-fold for
chiral tubes; for the achiral ones it is four-fold, besides double degenerate bands with odd or
even vertical mirror parity. At the edges of the Brillouin zone less degenerate states may occur
with odd and even z-reversal parity.

Each m̃-band consists of q̃ m-bands which pairwise meet at the Brillouin zone edges.
Since q̃ = 2 (mod 12), being two for achiral tubes, it appears that the m-bands of the achiral
tubes are grouped in pairs meeting at π/a. But the band structure of a chiral tube contains
large groups of q̃ = 14, 26, . . . bands with m = m̃ + in connected at k = 0, π/a.

Finally, symmetry implies some of the van Hove singularities. These singularities coincide
with the z-reversal parity (U-axis or horizontal mirror plane) odd and even states. Thus, for
chiral tubes, among q = 14n, 26n, . . . types of bands, only four at k = 0 and (for even n) at
k = π/a are even or odd. In contrast, every achiral band has a van Hove singularity at k = 0;
for even n, the m = n/2-bands are singular at k = π/a as well.

The importance of the coincidental z-reversal parity and van Hove singularities is nicely
illustrated by the optical transitions in zig-zag tubes. For the incoming light with polarization
orthogonal to the tube axis, the selection rules for absorption are

�k = 0 (vertical transition) �m = ±1. (20)

The density of states has a peak at k = 0, apparently suggesting an absorption peak at the
energies corresponding to the transitions. Nevertheless, at k = 0 the parities of the bands with
�m = ±1 are opposite; since for the considered polarization the incoming light has even
horizontal mirror parity, the transitions are actually forbidden. Thus, the frequently used JDOS
approximation (including only the selection rules (20)) is inappropriate. Of course, besides
these systematic extrema caused by z-reversal parities, others may appear [13] depending on
the considered model.
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Appendix A. Properties of the helical groups

For any two positive integers Q and R and each positive real f , the transformation
(
CR

Q

∣∣f )
generates the infinite cyclic group of the screw-axis:

T R
Q[f ] = {(

CR
Q

∣∣f )z = (
CRz

Q

∣∣f z
)∣∣z = 0,±1, . . .

}
.

The notation is non-unique: different choices of Q and R may give the same group. Since
CR

Q = C
R′=R (mod Q)
Q = C

R′/GCD(R′,Q)

Q/GCD(R′,Q) , this ambiguity is fixed by the condition that R is positive,

less than Q and coprime with Q. Then the minimal pure translation is
(
CR

Q|f )Q = (I |Qf ),
i.e. the translational period of the screw-axis group is A = Qf . Finally, the standard notation
for the generator

(
CR

Q

∣∣ A
Q

)
and group are

T R
Q(A) =

{(
CR

Q

∣∣∣∣ AQ
)z}

Q = 1, 2, . . . 0 � R < Q GCD(Q,R) = 1. (A.1)

The pure translational group is obtained for R = 0; then Q = 1 by convention.
For each Q,R, n = 1, 2, . . . the elements of the groups TR

Q(A) and Cn commute, enabling
the construction of their direct product, being obviously the first family line group. Now, Cn

introduces an additional non-uniqueness (besides the resolved one in R): pure rotations of the
total group are contained in Cn (thus n is unique), but n different screw-axis groups, generated
by

(
CR

QCs
n

∣∣A/Q
)

for s = 0, . . . , n−1, can equally well be used to obtain the same line group.
The fractional translations of all these generators are the same, as well as the minimal isogonal
rotation, and its order is q = nQ/GCD(n,Q). Thus, a new standardization resolving this
non-uniqueness is the choice of a helix. To get it, we first rewrite all helical generators in the
form

(
C

Rn/GCD(n,Q)+sq̃
q

∣∣A/Q
) = (

Crl
q

∣∣A/Q
)

(l = 0, . . . , n − 1), with r0 = Rn/GCD(n,Q)

(mod q̃) and rl = r0 + lq̃ . All products T rl

q (A) ⊗ Cn are the same group L. Obviously, r0 is
coprime with q̃ (since R is coprime with q) and singles out the generator with minimal rotation,
producing therefore the most slanted helix. By one convention, denoted by (C1), r0 is chosen
for r. Another one, (C2), is to use the minimal rl being coprime with q. The translational
period a of L is obtained from the relation (I |a) = (

Crz
q

∣∣zA/q
)
Cs

n; using GCD(r, q̃) = 1,
it is solved by z = iq̃, and the minimal solution (for i = 1) gives a = A/n. Summarizing,
the first family line group L in the factorized form (3) is uniquely given by positive integers
q, r, n and positive real a.

Appendix B. Relations between the helical and the roto-translational notation

Among the L elements �(t, j) = (
C

j
q

∣∣(Fr[jp/q] + t)a
)
, pure rotations Cs

n = �̃(0, s) are
singled out by vanishing of the translational part, Fr[jp/q]+t = 0. This gives two independent
requirements: the integer part implies t = 0, while the fractional translation Fr[jp/q] = 0 if
and only if j = sq/GCD(q, p). This gives Cs

n = C
sq/GCD(q,p)
q = Cs

GCD(q,p), implying further
n = GCD(q, p) and �̃(0, s) = �(0, sq̃).

The fractional translation of the helical generator is only a/q̃. Thus, t = 0 in the
equation �̃(1, 0) = �(t, j) simplifying to

(
Cr

q

∣∣a/q̃
) = (

C
j
q

∣∣Fr[j p̃/q̃]a
)

(here p̃ = p/n). The
equality of the translational parts yields the condition Fr[j p̃/q̃] = 1/q̃ for j , i.e. j p̃ = 1
(mod q̃). The reduced system of roots is just the set of possible (equivalent) values rl of r,
with one solution given in terms of Euler’s function ϕ (Euler’s theorem is applicable since
GCD(p̃, q̃) = 1): the inverse if p̃ modulo q̃ is j = r0 = p̃ϕ(q̃)−1 (mod q̃). Obviously,
GCD(r0, q̃) = 1 and r0 < q̃, thus this minimal value is r for the convention (C1). Also, this
means that p̃ is the inverse of r (in both conventions) modulo q̃ .
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All this is used to derive the interrelations (5) and (6) of two sets of the generators. In the
last one it should be noted that s = (1 − rp̃)/q̃ (mod n) = nFr[(1 − rp̃)/q], since rp̃ = 1
(mod q̃) is the solution of sq̃ + rp̃ = 1 (mod q).
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[4] Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 1579

Dresselhaus M S, Dresselhaus G and Eklund P C 1998 Science of Fullerenes and Carbon Nanotubes
(San Diego, CA: Academic)

Saito R, Dresselhaus G and Dresselhaus M 1998 Physical Properties of Carbon Nanotubes (London: Imperial
College Press)

[5] White T C, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485
Jishi R A, Venkataraman L, Dresselhaus M S and Dresselhaus G 1995 Phys. Rev. B 16 11176
White C T and Todorov T N 1998 Nature 323 240
Tasaki S, Maekawa K and Yamabe T 1998 Phys. Rev. B 57 9301
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